
 

 

  
Abstract—Using a phenomenologically constructed Lagrangian 

function, a nonlinear partial differential equation is obtained, which 

describes the space – time distribution of a physical scalar parameter 

( , )n r t
�

, which can be density, concentration, temperature, etc. For 

the one-dimensional case phase trajectories in three dimensions are 

obtained depending on the numerical parameter of the problem, 

designated as 3x .   

 

Keywords—Dissipative processes, Lagrangian function, phase 

trajectory, phase portrait, nonlinear dynamics. 

I. INTRODUCTION 

HEORETICAL description of any physical process is 

associated first of all with the set up of the corresponding 

physical problem. However, in those cases when it comes 

to equations of mathematical physics [1 - 15], the main tool is 

a method for building a particular Lagrange’s function, which 

is based on the well-known rule of finding the difference 

between the densities of the kinetic and potential energies. 

Further, by using the action functional, almost all the basic 

equations of mathematical physics are obtained, from the 

Maxwell equations to the Poisson and Laplace equations. The 

exception here are the equations of parabolic type, which 

include only the dissipative equations as heat conduction and 

diffusion equations, and in the special case also the Navier - 

Stokes equation. To obtain parabolic equations class, artificial 

method is often used in theoretical physics. It is based on 

building certain functional S , and them using the 

phenomenological approach  

n S

t n

δ
γ

δ
∂

=
∂

,            (1) 

(where γ  is a certain constant value providing correct 

equation dimension (1), and symbol  
δ
δ

  means drawing of 

the functional derivative from functional S ) the unknown 

equations are found.  
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II. PROBLEM FORMULATIONN 

That is why here the main aim is always to build quite specific 

invariant functional { }( ,S n r t
�

. The problem, which is 

solved in this paper, is general in nature and reduced to 

building just the most general form of functional { }( ,S n r t
�

. 

The only requirement which is applied to subintegral function 

{ } { } { } { } { }2

, , , , , ..., , , ...
i i k

n n
L t r n n n

x x x

 ∂ ∂
  ∂ ∂ ∂ 

�
ɺ ɺɺ  (where 

{ } { } ( ) ( ) ( )( )1 2, , , ,... ,pn n n r t n r t n r tα= = −
� � �

 , a certain 

generalized physical parameter (concentration, temperature, 

density, hydrodynamic flow velocity components etc.),  t −   

time, p −  quantity of unknown functions, 1, 2,..., pα = , 

indices , ,... 1, 2,3i k =  refer to three Cartesian coordinates 

, ,x y z ) is its invariance with respect to the replacement 

operations  ,t t r r→ − → −
� �

.  

 

III. PROBLEM SOLUTION 

As a result for the case of two independent functions 
0 1,n n  it 

can be written that       

{ } { } { } { } { }2

, , , , , ..., , , ...
i i k

n n
L t r n n n

x x x

 ∂ ∂
=  ∂ ∂ ∂ 

�
ɺ ɺɺ  
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K
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K
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b
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n n
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= = + − −

+ + + + +

 + + + ∇ + ∇ − 

− ∇ ∇ − ∇ + ∇ +

 + ∇ + ∇ − 

ɺ ɺ

�

�

  (2) 

where all the presented here coefficients 

12 1,2,3, , , , , , ,l b A Kα β γ γ
� �

 have the relevant dimension, 
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which for the right part of expression (2) by its nature should 

define the energy density, simply to say the pressure, and 

1K
D

β
= , D  - the diffusion coefficient, 3 13K K= .   It also 

should be noticed that constant values 
0K , 1K , 2K  и 

3K  

will have the meaning of chemical reaction speeds if  
0 1,n n   

mean, for example, concentration of the reactive substances in 

the chemical reaction. In an abstract way, they are just a few 

functions. Since the action may be specified as (see. references 

[16-18] as example) 

( )∫ ∫=
V

t

t

xdtdnnLS 3

10

1

0

, ,             (3) 

then by insertion of (2) into (3) and them into(1), and by 

making simple calculations of the variation derivatives by the 

relevant concentrations nα , the following system of two 

nonlinear differential equations in partial derivatives can be 

obtained  

( )0 0 1 3 0 0 1 0 1

2 2

0 0 1 0 2 0 1 2 1

[

2

n K n K n n b n n n

n A n K n K n n K n

λ α

γ

= − − − − ∇ +

+ ∆ + ∇∆ + + + 

�
ɺ ɺɺ

� (4) 

( )1 0 0 3 1 1 1 0 0

2 2

1 1 1 1 2 0 1 2 0

[

2

n K n K n n b n n n

n A n K n K n n K n

λ α

γ

= − − + − ∇ +

+ ∆ + ∇∆ + + + 

�
ɺ ɺɺ

�   (5) 

   For the purpose of specificity, we will understand 0 1,n n  as 

concentrations of the reacting substances in the chemical 

reaction. However, it should be emphasized that all the 

following consideration is general. 

   Well in view of the just said we introduce the following 

designation for diffusion coefficient γλ=D , and consider 

the following special cases  

   1. If 03210 ======= KKKKAb
��

α  

as a result we will obtain the regular equation of diffusion 

0

0 nD
t

n
∆=

∂

∂
.         (6) 

2.And if  0
1

210 ======= KKKAb
��

γ
λ

 

the equation describing the Belousov-Zhabotinskii reaction is 

obtained.  

00

2

00 =+ nn ωɺɺ ,          (7) 

where frequency is 
α

ω 3

0

K
= . 

3. 0
1

3210 ======= KKKKAb
��

λ
. 

As a result the equation of acoustic vibrations (concentration) 

               0

2

2

0

2

nc
t

n
s ∆=

∂

∂
,              (8) 

where sound velocity is 
α
γ

=sc . 

4. 03210 ====== KKKKγα . 

From equation (4) it appears           

( ) 01010 nAnnnbn ∆∇+∇−−=
��

ɺ λλ .       (9) 

Shall the number of particles in the solution maintains, i.e. 

constnnn ==+ 10
, and the constant vectors b

�

 and A
�

 

have one non-zero component ( )0,0,bb =
�

, ( )0,0,AA =
�

, 

each we can find from here 
'''

0

'

000 )2( Annnnbn λλ +−=ɺ , 

where the dashes mean differentiation by coordinate x . On 

the assumption that 0<b and 0>A , we obtain 

0)2( '''

0

'

000 =−−+ Annnnbn λλɺ . If it is necessary to 

find solution of this equation in the form of a solitary wave by 

accepting that )(),( 000 tVxntxn −= , where 0V  is a certain 

velocity, then we will obtain 

02)( '''

0

'

00

'

00 =−−− AnnnbnVnb λλλ , where dash 

here means already differentiation by argument tVx 0− . 

Finally, after selecting constant λ  in form of 
nb

V

3

0=λ in 

this equation, we immediately get well-known Korteweg-de 

Vries equation 

0'''

0

'

0
0'

0 =++ nn
n

n
n β ,          (10) 

where constant is 
nb

AV

2

0=β . 

  So, as we have seen that the system of equations (4) allows 

us in the relevant special cases obtaining any known 

differential equations describing a particular physical 

phenomenon. Our challenge now will be to find possible 

solutions of the equation system (4-5) by numerical methods 

in the one-dimensional case, provided that the solution is self-

similar form and depends on  difference tVx 0− . We will 

assume that constnnn ==+ 10
. The considering (5), 

equation (4) can be traced to the following form: 

( )

( ) ( )
( )

20
0 0 2 0 3 0

2 2

1 2 0 0 0

0 0 0

[ 3
3

2 ...]

s

V
n K n K n K K n

b n

K K n n c n

b n n n A n

α

= + − + +

+ − − − ∆ −

− − ∇ + ∇∆

ɺ

ɺɺ

� �

  

and in the one-dimensional case it comes from here 

immediately that  
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( )

( ) ( )
( )

20
0 0 2 0 3 0

2 2 ''

1 2 0 0 0

' '''

0 0 0

[ 3
3

2 ...]

s

V
n K n K n K K n

b n

K K n n c n

b n n n An

α

= + − + +

+ − − − −

− − +

ɺ

ɺɺ (11) 

We will try solution of equation (11) in form of 

( ) ( )0 0 0,n x t n x V t= − .  After insertion and 

dimensionalizationless of variables we will have the 

following nonlinear and nonhomogeneous equation    

( )5 3 4

2

2 4 1

1

2

a y a y a y y

a y a yy a

′′′ ′′ ′− + − − +

′+ + =
       (12) 

where dimensionless function is 
n

n
y 0= , new dimensionless 

argument is 
( )( )0 0 3

3

x V t K K

b n
ξ

− +
= , and coefficients are 

( )
0 2 1 2

1 2

0 3 0 3

3
, ,

K K n K K
a a n

K K n K K

+ −
= =

+ +
   

( )( )

( )
( )

2 2

0 0 3

3 42 2

2

0 3

5 3

1
, ,

9 3

.
3

sV c K K
a a

b n

A K K
a

b n

α − +
= =

+
=

       (13) 

Differentiation in (12) is made by the argument ξ . If the 

constant  b  is turned to zero then those terms in the equation, 

which are proportional to the first derivative ξ , disappear and 

the following nonlinear equation of the third order 
2

0 3 2 1a y a y y a y a′′′ ′′− − + = −  can be obtained. The above 

equation, unfortunately, cannot be solved analytically, and the 

asymptotic cases (for particular values of the parameters, as 

well as for small values of the argument or function) have very 

little relevance to the reality. Therefore, in order to study the 

possible phase trajectories we analyzed a much more complex 

equation. In some particular cases below its solution is 

illustrated by various phase portraits and with different values 

of the parameters. When considering all the other nonlinear 

terms, which appear in functional (2), equation (12) can be 

presented in the following rather general form  

     
2 3

5 0 1 2 3( ...)a y y b b y b y b yα α′′′ ′′+ = + + + + (14) 

By assuming here that 5 0a = , we have      

  
2 3

0 1 2 3 ...y b b y b y b y′′ = + + + +           (15) 

To build phase portraits of this equation we should be written 

in the form of the following system of differential equations 

2 3

1 0 1 2 2 2 3 2

2 1

...,

.

x b b x b x b x

x x

 ′ = + + + +


′ =
   (16) 

In Fig. 1-22 some possible phase portraits in coordinates 

1 2x x− . Graphs of the solutions and the phase portraits in the 

form of functions from the numerical parameter   for the 

systems of 1-7 are of illustrated. It is necessary to note that the 

phase portraits describe the connection of relative 

concentrations with the speed of their change, therefore not it 

goes about what acoustic waves here of speech. If we are 

interested in the dependence of concentration on the time, 

these fluctuations will be identical to the acoustic waves, 

,which is evident from figures 2,5,11,14,17,20, which describe 

purely oscillating  processes, in particular, acoustic waves. 

 

1.

 

1 2

2 3

2 1 1 1 3 2

3

6 7 sin

0

x x

x x x x x x

x

′ =
 ′ = + − +
 ′ =

 

 
Fig.1. The phase portrait of the system is obtained with 

3 1x = −
 

and the initial conditions 1 2(0) (0) 1x x= = . 

(Temporary) Time dependence 1( )x t
 
is given in the following 

figure. 
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Fig.2. Solution of the system 
1( )x t  with 

3 1x = − and the 

initial conditions  
1 2(0) (0) 1x x= = . 

 
Fig.3. It is shown that the phase portraits of the system 

qualitatively change depending on the value of the coefficient 

with 
2sin x , whose values are shown along the vertical axis. 

With 
3 0x <  the equilibrium point is of the focus type, with   

3 0x =  it is of the center type, and with 
3 0x <  - the phase 

trajectories become limiting cycles. The initial conditions 

everywhere 1 2(0) (0) 1x x= =
.   

 

2. 

1 2

2 1 3 2

3

100sin sin

0

x x

x x x x

x

′ =
 ′ = − +
 ′ =

 

 
Fig.4. The phase portrait of the system is obtained with  

3 1x = −  and the initial conditions 1 2(0) (0) 1x x= = . Time  

dependence 1( )x t  is given in the following figure. 

 

Fig.5. Solution of the system  1( )x t  with 3 1x = −  and the 

initial conditions 1 2(0) (0) 1x x= = . 
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Fig.6. It is shown how the phase portrait of the system changes 

depending on the parameter of the system - coefficient at 

2sin x  (its values  are  plotted along the vertical axis). The 

critical value 3 0x =  leads to “the disruption” when the phase 

trajectory goes  to infinity. The initial conditions everywhere 

1 2(0) (0) 1x x= = . 

 

3.

 

1 2

2 3

2 1 1 1 3 2

3

6 7 exp

0

x x

x x x x x x

x

′ =
 ′ = + − +
 ′ =

 

Fig.7

. The phase portrait of the system is obtained with 3 1x = −  

and the initial conditions 1 2(0) (0) 1x x= = . Time 

dependence 1( )x t  is given in the following figure. 

 

 

Fig.8. Solution of the system  1( )x t  with 3 1x = − and the 

initial conditions 1 2(0) (0) 1x x= = . 
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Fig.9. Simulation of the dependence of the phase portraits of 

the system on its parameter – the coefficient at   2exp x  

(plotted along the vertical axis). It is evident that the  phase 

portrait changes radically:  at 3 0x <
 
the  phase trajectories  

are «twisted»  in a  spiral towards the equilibrium point, and at 

3 0x = - the phase portrait is a center. The initial conditions 

everywhere 1 2(0) (0) 1x x= = .  

 

4. 

1 2

2

2 1 3 1 1

3

7

0

x x

x x x x x

x

′ =
 ′ = + −
 ′ =  

 
Fig.10. The phase portrait of the system is obtained with 

3 6x =  and the initial conditions 
1 2(0) (0) 1x x= = . 

 

Fig.11. Solution of the system  1( )x t  with 3 6x =  and the 

initial conditions 1 2(0) (0) 1x x= = . 

 
Fig.12. Changes in the parameter of the system - coefficient at  

2

1x  -  from “- 10” to “10” does not lead to a change in the 

nature of the dynamics of the system. The only change is the 

shift  in the equilibrium point. At 3 0x =  the equilibrium 

point is (0;0) , at 3 0x ≠  this point smoothly moves away  

from the origin of coordinates. The initial conditions 

everywhere 1 2(0) (0) 1x x= = . 
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2 3 1

3

sin

0

x x

x x x

x

′ =
 ′ =
 ′ =  

 

 
Fig.13. The phase portrait of the system is obtained with 

3 6x =  and the initial conditions 1 2(0) (0) 1x x= = . Time 

dependence 1( )x t  is given in the following figure. 

 

 

 

Fig.14. Solution of the system   1( )x t
 
with 3 6x =

 
and the 

initial conditions  1 2(0) (0) 1x x= = . 

 

 

Fig.15. If the parameter of the system - coefficient at  1sin x  

(shown along the vertical axis) - falls into the region ( )0;1 , 

then the  phase portrait changes: a trajectory of the type 

“center” transforms into a curve similar to a sine. The initial 

conditions everywhere 1 2(0) (0) 1x x= = . 

 

6. 

1 2

2 3 1

3

cos

0

x x

x x x

x

′ =
 ′ =
 ′ =

 

 
Fig.16. The phase portrait of the system is obtained with  

3 6x =  and the initial conditions 1 2(0) (0) 1x x= = . 
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Fig.17. Time dependence 1( )x t , obtained on the assumption 

that  3 6x =
 
 and the initial conditions 1 2(0) (0) 1x x= = . 

 

 
Fig.18. The parameter of the system is the coefficient at 

1cos x   (shown along the vertical axis). If ( )3 3;0x ∈ − , then 

a trajectory of the center  type again transforms into a sine-

type curve, and at 
3 0x =  it becomes a horizontal line. The 

initial conditions everywhere 
1 2(0) (0) 1x x= =  

 

 

 

7.

 

2

1 2

2 1 3

3

6cos sin

0

x x

x x x x

x

′ =
 ′ = +
 ′ =  

 

 
Fig.19. The phase portrait of the system is obtained with   

3 7x = −  and the initial conditions 
1 2(0) (0) 1x x= = . 

 

 

 

Fig.20. Solution 
1( )x t  obtained on the assumption that 

3 6x =   and the initial conditions 
1 2(0) (0) 1x x= = . 

INTERNATIONAL JOURNAL OF MECHANICS Volume 9, 2015

ISSN: 1998-4448 316



 

 

 

Fig.21. A change in the coefficient at 2sin x  leads to a change 

in the phase portraits of the system. At  3 0x <  the phase 

portraits  can be seen well in Fig.19, at 3 0x =  it is already a 

center, at 30 3,5x< <  the phase portraits are limiting 

cycles. Beginning from the critical value 3 3,5x = we observe  

the disruption of the  trajectory to infinity according to the 

sinusoidal law. The initial conditions everywhere 

1 2(0) (0) 1x x= = .  

 

The influence of the value of the coefficient at 
1cos x  on the 

nature of phase portraits is shown in the following figure. 

 
Fig.22. The parameter of the system is the coefficient at 

1cos x . The phase trajectory at 
3 0x =  is “almost a straight 

line”, at  
3 34 4, 0x x− < < ≠  it is bent in the form of a 

wave,  and if  3 4x ≥ , it turns into a cycle. The initial 

conditions everywhere  1 2(0) (0) 1x x= =
. 

 

IV. CONCLUSION 

In conclusion of the paper we should note two main points.     

1. A general method for deriving any nonlinear differential 

equations describing the real physical processes, is suggested; 

2. Numerical calculation of the phase portraits for some types 

of nonlinear differential equations and their graphical 

illustration are provide 
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